Math, asked by TbiaSupreme, 1 year ago

cos(cos⁻¹(- 1/5)+sin⁻¹(- 1/5)) is.......,Select Proper option from the given options.
(a) 4/9
(b) 1/3
(c) 0
(d) - 1/3

Answers

Answered by hukam0685
0
Dear Student,

Answer: Option C (0)

Solution:

First solve using given formula's
 {cos}^{ - 1} ( - x )= \pi -  {cos}^{ - 1} x \\  \\  {sin}^{ - 1} ( - x) =  - {sin}^{ - 1} x \\  \\
 {cos}^{ - 1} ( \frac{ - 1}{5} ) = \pi -{cos}^{ - 1} ( \frac{ 1}{5} )  \\  \\  {sin}^{ - 1} ( -  \frac{1}{5} ) =  - {sin}^{ - 1} (   \frac{1}{5} )  \\  \\  \cos({cos}^{ - 1} ( \frac{ - 1}{5} ) +{sin}^{ - 1} (   \frac{ - 1}{5} ) )  =  \\  \\  \\  \cos(\pi -{cos}^{ - 1} ( \frac{ 1}{5} )  -{sin}^{ - 1} (   \frac{1}{5} ))  \\  \\ \cos(\pi -({cos}^{ - 1} ( \frac{ 1}{5} )   + {sin}^{ - 1} (   \frac{1}{5} ))  \\  \\  since \:  \:  {sin}^{ - 1} x +  {cos}^{ - 1} x =  \frac{\pi}{2}  \\  \\ =  cos(\pi -  \frac{\pi}{2} ) \\  \\  = cos \frac{\pi}{2}  \\  = 0
Hope it helps you
Answered by abhi178
0
we have to find the value of cos[cos^-1(-1/5) + sin^-1(-1/5) ]

if you know a formula , you can definitely solve it just 1 or 2 second.

formula is -----> sin^-1x + cos^-1x = π/2 , where |x| < 1

in above question if we assume -1/5 = x
then, it seems like cos[cos^-1x + sin^-1x]
from above formula, cos^-1x + sin^-1x = π/2

so, cos[cos^-1x + sin^-1x] = cosπ/2 = 0

hence, option (c) is correct.
Similar questions