cos((n+1) A) cos((n+2) A) + Sin ( (n+1)A) Sin ((n+2)A)=cosA . prove that LHS=RHS
Answers
Answered by
10
Answer :
Solve LHS :-
=> we know that,
cos(A - B) = Cos A . CosB + SinA + SinB
Therefore ,
A = ( n + 1)x
B = (n +2)x
Hence,
sin(n + 1)x sin (n +2 )x + cos(n +1)x cos (n + 2)x
=> cos((n+1)x-(n+2)x)
cos(nx+x-nx-2x)
cos(-x)
cosx { since cos(-x) = cosx }
Proved
Similar questions