cos(n+1)α⋅cos(n−1)α−sin(n+1)α⋅sin(n−1)α=
a.
cos2n alpha
B.
sin2n alpha
C.
cos2 alpha
D.
sin2 alpha
Answers
Answered by
3
Step-by-step explanation:
ANSWER
sin(θ+α)
cos(θ−α)
=
m−1
m+1
Applying componendo and dividendo
(m+1)−(m−1)
(m+1)+(m−1)
=
cos(θ−α)−sin(θ+α)
cos(θ−α)+sin(θ+α)
⇒m=
cosθcosα+sinθsinα−sinθsinα−cosθsinα
cosθcosα+sinθsinα+sinθsinα+cosθsinα
=
cosθ(cosα−sinα)+sinθ(sinα−cosα)
cosθ(cosα+sinα)+sinθ(sinα+cosα)
=
(cosθ−sinθ)(cosα−sinα)
(cosθ+sinθ)(cosα+sinα)
=
(cosθ−sinθ)
(cosθ+sinθ)
⋅
(cosα−sinα)
(cosα+sinα)
=
1−tanθ
1+tanθ
⋅
1−tanα
1+tanα
=tan(
4
π
+θ)⋅tan(
4
π
+α)
Similar questions