Math, asked by AkshatNasa293, 1 year ago

Cos pi/7. cos 2pi/7. cos 4pi/7 = ?

Answers

Answered by sprao534
46

Please see the attachment

Attachments:
Answered by dikshaagarwal4442
0

Answer:

cos \frac{\pi }{7}. cos\frac{2\pi }{7}. cos\frac{4\pi }{7} = \frac{1}{8}

Step-by-step explanation:

  •  The given trigonometric expression,

              cos \frac{\pi }{7}. cos\frac{2\pi }{7}. cos\frac{4\pi }{7}

                = 2sin\frac{\pi }{7}.cos\frac{2\pi }{7}. cos\frac{4\pi }{7} ×  \frac{1}{2sin\frac{\pi }{7} }

                = (2sin\frac{\pi }{7}cos\frac{2\pi }{7}). cos\frac{2\pi }{7}. cos\frac{4\pi }{7} ×  \frac{1}{2sin\frac{\pi }{7} }

                = (sin\frac{2\pi }{7}). cos\frac{2\pi }{7}.cos\frac{4\pi }{7} ×  \frac{1}{2sin\frac{\pi }{7} }   [ As we know sin2A = 2sinAcosA]

                = (2sin\frac{2\pi }{7}cos\frac{2\pi }{7}).cos\frac{4\pi }{7} ×  \frac{1}{2sin\frac{\pi }{7} } × \frac{1}{2}

                = sin\frac{4\pi }{7} cos\frac{4\pi }{7} ×  \frac{1}{2sin\frac{\pi }{7} } × \frac{1}{2}

                = (2sin\frac{4\pi }{7} cos\frac{4\pi }{7})×  \frac{1}{2sin\frac{\pi }{7} } × \frac{1}{2} × \frac{1}{2}

                = sin\frac{8\pi }{7}×  \frac{1}{2sin\frac{\pi }{7} } × \frac{1}{2} × \frac{1}{2}

                = \frac{sin\frac{8\pi }{7} }{8sin\frac{\pi }{7} }.............................(1)

  • sin\frac{8\pi }{7} = sin (\pi +\frac{\pi }{7})

                  = sin \frac{\pi }{7}         [ As we know sin(π + A) = sinA]

  • Putting the value of  sin\frac{8\pi }{7}  in equation (1) we get,

             cos \frac{\pi }{7}. cos\frac{2\pi }{7}. cos\frac{4\pi }{7}  = \frac{sin\frac{8\pi }{7} }{8sin\frac{\pi }{7} } = \frac{sin\frac{\pi }{7} }{8sin\frac{\pi }{7} } = \frac{1}{8}

Similar questions