Math, asked by vikisnake, 1 year ago

cos pi by 6 - i sin pi by 6 divided by 2 into cos pi by 3 + i sin pi by 3​


brunoconti: resend for a full solution

Answers

Answered by brunoconti
2

Answer:

Step-by-step explanation:

Attachments:
Answered by mathi98
14

Question:

Find the rectangular form of the complex number

 \frac{ \cos(\frac{\pi}{6})  - i  \sin( \frac{\pi}{6} ) }{2( \cos( \frac{\pi}{3} )  +  </u><u>i</u><u> </u><u>\sin( \frac{\pi}{3} ) }

Solution

 = \frac{ \cos(\frac{- \pi}{6})  + i  \sin( \frac{ -\pi}{6} ) }{2( \cos( \frac{\pi}{3} )  +  i\sin( \frac{\pi}{3} ) }

 =  \frac{1}{2} ( \cos( \frac{ - \pi}{6}  -  \frac{\pi}{3} )  + i \sin( \frac{ - \pi}{6} -  \frac{ - \pi}{3}  ) ) \\  \\  =  \frac{1}{2} ( \cos( \frac{ - 3\pi}{6} ) + i \sin( \frac{ - 3\pi}{6} ) )  \\  \\   = \frac{1}{2} ( \cos( \frac{ - \pi}{2}) + i \sin( \frac{ - \pi}{2} )  )  \\  \\  =  \frac{1}{2} ( \cos \frac{\pi}{2}  -i \sin \frac{\pi}{2}   )  \\  \\  =  \frac{1}{2} (0 - i(1)) \\  \\  =  \frac{ - i}{2}

Hope it helps ya!!

Mark As Brainliest

Similar questions