Math, asked by saks8, 1 year ago

cos(piee/4-thta)cos(piee/4-fiee) -(piee/4-thta)sin (piee/4-fiee) show that sin (thta+fiee)

Answers

Answered by Amal45
1

Answer:


Step-by-step explanation:Let angle theta be represented by A.


(sinA + Sec A)² + (cos A + cosec A)² 

 = [ (SinA CosA + 1)²/CosA ]² + [ (CosA SinA + 1)² / Sin²A ]


 =  (1+ SinA CosA)² * [1 / Cos²A  + 1/sin²A ]

 =  (1 + SinA CosA)² * [ Cos²A + Sin²A]/ [cos²A * Sin²A ]


 =  ( 1 + SinA CosA)²/ (cosA * SinA)²

 =  [ 1/cosA * 1/sinA  + 1 ] ²

 = [ Sec A Cosec A + 1 ]²

Let angle theta be represented by A.


Answered by SimiEshu2002
0

Step-by-step explanation:

Let pi /4 - tan theta be represented by A.

(sinA + Sec A)² + (cos A + cosec A)² 

 = [ (SinA CosA + 1)²/CosA ]² + [ (CosA SinA + 1)² / Sin²A ]

 =  (1+ SinA CosA)² * [1 / Cos²A  + 1/sin²A ]

 =  (1 + SinA CosA)² * [ Cos²A + Sin²A]/ [cos²A * Sin²A ]

 =  ( 1 + SinA CosA)²/ (cosA * SinA)²

 =  [ 1/cosA * 1/sinA  + 1 ] ²

 = [ Sec A Cosec A + 1 ]²

Put value A to get reqd

Similar questions