Math, asked by sitaacharya771, 2 months ago

cos power4 theta - sin power 4 theta = cos 2 theta

Answers

Answered by Anonymous
8

Step-by-step explanation:

 {cos}^{4} \theta  -  {sin}^{4} \theta  =  {cos}2  \theta

 LHS = {cos}^{4} \theta  -  {sin}^{4} \theta

 =  {(cos^{2} \theta) }^{2}  -  {( {sin}^{2}  \theta})^{2}

 \scriptsize = ({cos}^{2} \theta -  {sin}^{2} \theta )({cos}^{2} \theta  +   {sin}^{2} \theta ) \: ( \because {a}^{2} -  {b}^{2}  = (a - b)(a + b))

 = cos2 \theta.1 \:  \:  \:  \: (  \because{sin}^{2}  \theta +  {cos}^{2}  \theta=1)

 = cos2 \theta

= RHS

Hence proved

Similar questions