Cos(sin^-1(-4/5))+sin(tan^-1(3/4))+cos(cosec^-1(5/3))
Answers
Answered by
2
We have to find the value of cos(sin¯¹(-4/5)) + sin(tan¯¹(3/4)) + cos(cosec¯¹(5/3))
solution : we know, sin¯¹(-x) = -sin¯¹x
so, sin¯¹(-4/5) = -sin¯¹(4/5)
now let sin¯¹(4/5) = A
⇒sinA = 4/5
so cosA = √(5² - 4²)/5 = 3/5
⇒cos¯¹(3/5) = A
now, sin¯¹(-4/5) = -cos¯¹(3/5)
now cos(-cos¯¹(3/5)) = 3/5 [because cos¯¹(-x) = cos¯¹x]
similarly, sin(tan¯¹(3/4))
tan¯¹(3/4) = B
⇒tanB = 3/4
⇒sinB = 3/√(3² + 4²) = 3/5
⇒B = tan¯¹(3/4) = sin¯¹(3/5)
so, sin(sin¯¹(3/5)) = 3/5
and cos(cosec¯¹(5/3))
cosec¯¹(5/3) = C
⇒cosecC = 5/3
⇒cosC = √(5² - 3²)/5 = 4/5
⇒C = cosec¯¹(5/3) = cos¯¹(4/5)
so cos(cos¯¹(4/5)) = 4/5
Therefore, cos(sin¯¹(-4/5)) + sin(tan¯¹(3/4)) + cos(cosec¯¹(5/3)) = 3/5 + 3/5 + 4/5 = 10/5 = 2
Similar questions
Chemistry,
5 months ago
English,
5 months ago
Math,
10 months ago
Physics,
10 months ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago