cos + sin = √2 cos तो cos - sin = √2 sin सिध्द करिये
Answers
Answered by
17
Answer:-
Given:
Cos A + sin A = (√2) * Cos A
On squaring both sides we get,
→ (Cos A + sin A)² = (√2)² * cos² A
Using the formula (a + b)² = a² + b² + 2ab in LHS we get,
→ cos² A + sin² A + 2 sin A Cos A = 2 cos² A
→ 2 sin A Cos A = 2 cos² A - cos² A - sin² A
→ 2 sin A Cos A = cos² A - sin² A
Using the formula (a² - b²) = (a + b) * (a - b) in RHS we get,
→ 2 sin A cos A = (Cos A + sin A) * (Cos A - sin A)
Putting the value of (Cos A + sin A) as √2 * Cos A in RHS we get,
→ 2 sin A Cos A = (√2 * Cos A) * (Cos A - sin A)
→ (2 sin A * Cos A) / (√2 * Cos A) = Cos A - sin A
→ √2 * sin A = Cos A - sin A
Hence, Proved.
Similar questions