Cos square 15 ‐ cos square 75 = root 3 / 2
Answers
To prove ---> Cos² 15° - Cos² 75° = (√3 ) / 2
Proof --->
LHS = Cos² 15° - Cos² 75°
We have a formula , Cos²θ = 1 - Sin²θ , applying it here , we get
= 1 - Sin² 15° - ( 1 - Sin² 75° )
= 1 - Sin² 15° - 1 + Sin² 75°
= Sin² 75° - Sin² 15°
We have a formula ,
Sin²A - Sin²B = Sin ( A + B ) Sin ( A - B ) , applying it here, we get
= Sin ( 75° + 15° ) Sin ( 75° - 15° )
= Sin 90° Sin 60°
Putting Sin90° = 1 and Sin60° = √3 / 2 , we get
= 1 { ( √3 ) / 2 }
= √3 / 2 = RHS
Second method --->
LHS= Cos² 15° - Cos² 75°
= ( Cos 15° )² - ( Cos 75° )²
= ( Cos 15° + Cos 75° ) ( Cos 15° - Cos 75° )
= ( Cos 75° + Cos 15° ) ( Cos 15° - Cos 75° )
We have two formulee
(1) CosC + CosD = 2 Cos ( C+D/ 2 ) Cos ( C-D / 2 )
(2) CosC - CosD = 2 Sin ( C + D/ 2 ) Sin ( D- C / 2 )
Applying these formulee here we get
= 2 Cos( 75° + 15° / 2 ) Cos( 75° - 15°/2 )
2Sin( 15°+75°/2 ) Sin( 75° - 15° / 2 )
= 4 Cos(90°/2) Cos(60°/2) Sin (90°/2) Sin(60°/2)
= 4 Cos ( 45° ) Cos ( 30° ) Sin ( 45° ) Sin ( 30° )
= 4 ( 1 / √2 ) ( √3 / 2 ) ( 1 / √2 ) ( 1 / 2 )
= 4 × ( √3 / 8 )
= √3 / 2 = RHS
Third method --->
We have a formula
Cos2A = 2 Cos²A - 1
=> 2 Cos²A = 1 + Cos2A
Now taking , LHS = Cos² 15° - Cos² 75°
= 1/2 ( 2 Cos²15° - 2 Cos²75° )
Applying above formula , we get
= 1/2 { ( 1 + Cos30° ) - ( 1 + Cos150° ) }
= 1/2 ( 1 + Cos30° - 1 - Cos150° )
= 1/2 ( Cos30° - Cos150° )
We have a formula
Cosc - CosD = 2 Sin ( C + D / 2 ) Sin (D - C / 2 )
= 1/2 { 2 Sin (30° + 150° / 2 ) Sin ( 150° - 30° / 2 ) }
= Sin ( 180° / 2 ) Sin ( 120° / 2 )
= Sin ( 90° ) Sin ( 60° )
= ( 1 ) ( √3 / 2 )
= √3 / 2 = RHS