Cos square 15-cos square 75=root3/2
Answers
Answered by
2
Explanation:
Show that cos^2 (45°)-sin^2 (15°) = √3/4?
cos245∘−sin215∘cos245∘−sin215∘
=cos245∘−sin2(45∘−30∘)(LHS)(LHS)=cos245∘−sin2(45∘−30∘)
We know that sin(A−B)=sinA⋅cosB−cosA⋅sinBsin(A−B)=sinA⋅cosB−cosA⋅sinB
Therefore, LHS =cos245∘−(sin45∘⋅cos30∘−cos45∘⋅sin30∘)2=cos245∘−(sin45∘⋅cos30∘−cos45∘⋅sin30∘)2
=12−(12–√×3–√2−12–√×12)2=12−(12×32−12×12)2
=12−(3–√22–√−122–√)2=12−(322−122)2
=12−(3–√−122–√)=12−(3−122)
== 12−((3–√−1)28)12−((3−1)28)
=12−(3–√−1)28=12−(3−1)28
=12−4−23–√8=12−4−238
=12−2−3–√4=12−2−34
=2−(2+3–√)4=2−(2+3)4
=3–√4==34=RHS.
Hence, the problem is solved.
Similar questions