cos square 67 degree minus sin square 23 degree find the value of
Answers
Answered by
9
Heya !!
cos²67° – sin²23°
=> cos²(90°–23°) – sin²23°
=> sin²23° – sin²23°
=> 0
OR
cos²67° – sin²23°
=> cos²67° – sin²(90°–67°)
=> cos²67° – cos²67°
=> 0
cos²67° – sin²23°
=> cos²(90°–23°) – sin²23°
=> sin²23° – sin²23°
=> 0
OR
cos²67° – sin²23°
=> cos²67° – sin²(90°–67°)
=> cos²67° – cos²67°
=> 0
Answered by
2
To find:
Cos^2 67 - Sin^2 23
Solution:
By formula,
Cos^2A - Sin^2B = Cos ( A + B ) * Cos ( A - B )
Here,
A = 67
B = 23
Substituting,
We get,
Cos (67 + 23 ) * Cos( 67 - 23 )
Cos ( 90 ) * cos ( 45 )
Substituting values,
0 * 1/√2 .
Hence, Cos^2 67 - Sin^2 23 = 0
Read more on Brainly.in - https://brainly.in/question/3110172
Similar questions