Math, asked by pratyushssingh9870, 11 months ago

cos square alpha minus sin square alpha equals to tan square beta to prove cos square theta minus sin square theta equals to tan square alpha​

Answers

Answered by Rockysingh07
6

 {cos}^{2} \alpha  -  {sin}^{2}   \alpha  =  {tan}^{2}  \beta

To prove

 {cos}^{2}  \alpha  \:  -  { \sin }^{2}  \alpha  =  {tan}^{2}  theta

Answer:

Proved if Cos²θ - Sin²θ = tan²α then Cos²α - Sin²α = tan²θ

Step-by-step explanation:

if Cos²θ - Sin²θ = tan²α

Then

Cos²α - Sin²α = tan²θ

LHS = Cos²α - Sin²α

= Cos²α(1 - Tan²α)

= (1/Sec²α) (1 - Tan²α)

Sec²α = 1 + Tan²α

= (1/(1 + Tan²α))(1 - Tan²α)

= (1 - Tan²α)/(1 + Tan²α)

putting value of Tan²α

= (1 - (Cos²θ - Sin²θ))/(1 + Cos²θ - Sin²θ)

= (1 - Cos²θ + Sin²θ))/(1  - Sin²θ + Cos²θ)

using 1 - Cos²θ = Sin²θ & 1  - Sin²θ = Cos²θ

= (Sin²θ + Sin²θ))/(Cos²θ + Cos²θ)

= 2Sin²θ/2Cos²θ

= tan²θ

= RHS

Proved

Answered by adeeba57
0

Step-by-step explanation:

I don't know the answer but I will try to answer your question as soon as possible

Similar questions