cos square alpha minus sin square alpha equals to tan square beta to prove cos square theta minus sin square theta equals to tan square alpha
Answers
Answered by
6
To prove
Answer:
Proved if Cos²θ - Sin²θ = tan²α then Cos²α - Sin²α = tan²θ
Step-by-step explanation:
if Cos²θ - Sin²θ = tan²α
Then
Cos²α - Sin²α = tan²θ
LHS = Cos²α - Sin²α
= Cos²α(1 - Tan²α)
= (1/Sec²α) (1 - Tan²α)
Sec²α = 1 + Tan²α
= (1/(1 + Tan²α))(1 - Tan²α)
= (1 - Tan²α)/(1 + Tan²α)
putting value of Tan²α
= (1 - (Cos²θ - Sin²θ))/(1 + Cos²θ - Sin²θ)
= (1 - Cos²θ + Sin²θ))/(1 - Sin²θ + Cos²θ)
using 1 - Cos²θ = Sin²θ & 1 - Sin²θ = Cos²θ
= (Sin²θ + Sin²θ))/(Cos²θ + Cos²θ)
= 2Sin²θ/2Cos²θ
= tan²θ
= RHS
Proved
Answered by
0
Step-by-step explanation:
I don't know the answer but I will try to answer your question as soon as possible
Similar questions
Social Sciences,
5 months ago
English,
5 months ago
English,
11 months ago
Music,
11 months ago
Science,
1 year ago