Math, asked by jahanavidubey9616474, 1 day ago

cos square theta by 1 minus tan theta + sin cube theta by sin theta minus cos theta is equal to 1 + sin theta cos theta​

Answers

Answered by NITESH761
4

Step-by-step explanation:

We have,

\rm \dfrac{\cos ^2 \theta}{1- \tan \theta} + \dfrac{\sin ^3 \theta}{\sin \theta - \cos \theta} = 1+ \sin \theta \cos \theta

LHS,

\rm \dfrac{\cos ^2 \theta}{1- \tan \theta} + \dfrac{\sin ^3 \theta}{\sin \theta - \cos \theta}

\rm \dfrac{\cos ^2 \theta}{1- \dfrac{\sin \theta}{\cos \theta}} + \dfrac{\sin ^3 \theta}{\sin \theta - \cos \theta}

\rm \dfrac{\cos ^2 \theta}{\dfrac{\cos \theta -\sin \theta}{\cos \theta}} + \dfrac{\sin ^3 \theta}{\sin \theta - \cos \theta}

\rm \dfrac{\cos ^3 \theta}{\cos \theta - \sin \theta} + \dfrac{\sin ^3 \theta}{\sin \theta - \cos \theta}

\rm \dfrac{\cos ^3 \theta}{\cos \theta - \sin \theta} - \dfrac{\sin ^3 \theta}{\cos \theta - \sin \theta}

\rm \dfrac{\cos ^3 \theta ( \cos \theta - \sin \theta ) - \sin ^3 \theta (\cos \theta  - \sin \theta )}{(\cos \theta - \sin \theta)(\cos \theta - \sin \theta)}

\rm \dfrac{\cos ^3 \theta -\sin ^3 \theta}{\cos θ - \sin θ}

\rm \dfrac{(\cos \theta - \sin \theta ) (\cos ^2 \theta -\sin ^2 \theta + \sin \theta \cos \theta)}{\cos θ - \sin θ}

\rm = 1 + \sin \theta \cos \theta

Answered by mathdude500
8

Question

Prove that

\rm :\longmapsto\:\dfrac{ {cos}^{2}\theta }{1 - tan\theta } + \dfrac{ {sin}^{3}\theta }{sin\theta  - cos\theta } = 1 + sin\theta cos\theta

\large\underline{\sf{Solution-}}

Consider, LHS

\rm :\longmapsto\:\dfrac{ {cos}^{2}\theta }{1 - tan\theta } + \dfrac{ {sin}^{3}\theta }{sin\theta  - cos\theta }

We know,

\purple{\rm :\longmapsto\:\boxed{\tt{ tan\theta  =  \frac{sin\theta }{cos\theta }}}} \\

So, using this identity, we get

\rm \:  =  \: \dfrac{ {cos}^{2}\theta }{1 - \dfrac{sin\theta }{cos\theta }  } + \dfrac{ {sin}^{3}\theta }{sin\theta  - cos\theta }

\rm \:  =  \: \dfrac{ {cos}^{2}\theta }{ \dfrac{cos\theta  - sin\theta }{cos\theta }  } + \dfrac{ {sin}^{3}\theta }{sin\theta  - cos\theta }  \\

\rm \:  =  \: \dfrac{ {cos}^{3} \theta }{cos\theta  - sin\theta }  + \dfrac{ {sin}^{3}\theta }{sin\theta  - cos\theta }  \\

\rm \:  =  \: \dfrac{ {cos}^{3} \theta }{cos\theta  - sin\theta }  + \dfrac{ {sin}^{3}\theta }{ - (cos\theta  - sin\theta) }  \\

\rm \:  =  \: \dfrac{ {cos}^{3} \theta }{cos\theta  - sin\theta } -  \dfrac{ {sin}^{3}\theta }{cos\theta  - sin\theta}  \\

\rm \:  =  \: \dfrac{ {cos}^{3} \theta  -  {sin}^{3} \theta }{cos\theta  - sin\theta }  \\

We know,

\purple{\rm :\longmapsto\:\boxed{\tt{  {x}^{3} -  {y}^{3} = (x - y)( {x}^{2}  + xy +  {y}^{2}) \: }}} \\

So, using this identity, we get

 \rm \:  =  \: \dfrac{ \cancel{(cos\theta  - sin\theta )} \: ( {cos}^{2} \theta  +  {sin}^{2}\theta  + cos\theta sincos) }{ \cancel{cos\theta  - sin\theta }}

 \rm \:  =  \:  {cos}^{2}\theta  +  {sin}^{2}\theta  + cos\theta sin\theta  \\

We know,

\purple{\rm :\longmapsto\:\boxed{\tt{  {cos}^{2}x +  {sin}^{2}x = 1}}} \\

So, using this identity, we get

 \rm \:  =  \: 1 + sin\theta  \: cos\theta

Hence,

 \red{\rm\implies \:\boxed{\sf{ \dfrac{ {cos}^{2}\theta }{1 - tan\theta } + \dfrac{ {sin}^{3}\theta }{sin\theta  - cos\theta } = 1 + sin\theta cos\theta }}} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions
Math, 8 months ago