Math, asked by christinadevi34, 11 months ago

cos square theta minus sin square theta equals to cot square theta minus 1 divided by cot square theta plus 1

Answers

Answered by onlyforcoccockk
1

ANSWER is in picture...........

Attachments:
Answered by Anonymous
3

To prove

\fbox{\mathsf{cos^2\theta - sin^2\theta = \frac{cot^2\theta - 1}{cot^2\theta + 1}}}

Solving RHS

\large\mathsf{\implies\:\frac{cot^2\theta - 1}{cot^2\theta + 1}}

\large\mathsf{\implies\:\frac{cot^2\theta - (cosec^2\theta - cot^2\theta)}{cot^2\theta + cosec^2\theta - cot^2\theta}}

\large\mathsf{\implies\:\frac{cot^2\theta - cosec^2\theta + cot^2\theta}{\cancel{cot^2\theta} + cosec^2\theta - \cancel{cot^2\theta}}}

\large\mathsf{\implies\: \frac{2cot^2\theta - cosec^2\theta}{cosec^2\theta}}

\large\mathsf{\implies\:\frac{\frac{2cos^2\theta}{sin^2\theta} - \frac{1}{sin^2\theta}}{\frac{1}{sin^2\theta}}}

\large\mathsf{\implies\:\frac{\frac{2cos^2\theta - 1}{\cancel{sin^2\theta}}}{\frac{1}{\cancel{sin^2\theta}}}}

\mathsf{\implies\:\frac{2cos^2\theta - 1}{1}}

\mathsf{\implies\:2cos^2\theta - 1}

\mathsf{\implies\:2cos^2\theta - (cos^2\theta + sin^2\theta)}

\mathsf{\implies\:2cos^2\theta - cos^2\theta - sin^2\theta}

\mathsf{\implies\:cos^2\theta - sin^2\theta}

RHS = LHS

∴ Hence Proved

Identity used

  • cosec²θ - cot²θ = 1
  • cot²θ = cos²θ / sin²θ
  • cosec²θ = 1/ sin²θ
  • cos²θ + sin²θ = 1
Similar questions