Math, asked by s15894apraveen03646, 8 months ago

cos square (thita +45)+cos square (thita-45)=1​

Answers

Answered by Anonymous
2

Question

 \rm \:  \to \:  \cos {}^{2}( \theta + 45 \degree) +  \cos {}^{2} ( \theta - 45 \degree)  = 1

Solution:-

Given:-

\rm \:  \to \:  \cos {}^{2}( \theta + 45 \degree) +  \cos {}^{2} ( \theta - 45 \degree) = 1

Using the formula

  \rm \: \to \cos(A + B)  =  \cos(A) . \cos(B)  -  \sin(A)  \sin(B)

 \rm \: \to \cos(A  - B)  =  \cos(A) . \cos(B)   +  \sin(A)  \sin(B)

We get

 \rm \: \cos {}^{2} \theta. \cos {}^{2} 45 \degree -  \sin  {}^{2} \theta \sin45 \degree + \cos {}^{2} \theta. \cos {}^{2} 45 \degree  + \sin  {}^{2} \theta \sin45 \degree = 1

\rm \: \cos {}^{2} \theta. \cos {}^{2} 45 \degree+ \cos {}^{2} \theta. \cos {}^{2} 45 \degree   = 1

2 \cos {}^{2} \theta. \cos {}^{2} 45 \degree = 1

Where

 \cos( 45 \degree)  =  \dfrac{1}{ \sqrt{2} }

We get

2 \cos {}^{2}  \theta \times ( \dfrac{1}{ \sqrt{2} } ) {}^{2}  = 1

2 \cos {}^{2} \theta \times  \dfrac{1}{2}  = 1

 \cos {}^{2} \theta = 1

 \cos \theta = 1

  \theta =  \cos {}^{ - 1} 1

So

 \boxed{ \theta = 0 \degree}

Similar questions