cos square72-sins square54 evaluate this
Answers
Answered by
1
Answer:
-√5/4
Step-by-step explanation:
➡️ question given ➡️ cos²72°- sin²54°
➡️ question given ➡️ cos²72°- sin²54°➡️ cosø= sin(90-ø)
➡️ question given ➡️ cos²72°- sin²54°➡️ cosø= sin(90-ø) → cos 72°= sin(90-72)= sin18°
➡️ question given ➡️ cos²72°- sin²54°➡️ cosø= sin(90-ø) → cos 72°= sin(90-72)= sin18° → sin 18°=√5-1/4
➡️ question given ➡️ cos²72°- sin²54°➡️ cosø= sin(90-ø) → cos 72°= sin(90-72)= sin18° → sin 18°=√5-1/4➡️ sin ø=cos(90-ø)
➡️ question given ➡️ cos²72°- sin²54°➡️ cosø= sin(90-ø) → cos 72°= sin(90-72)= sin18° → sin 18°=√5-1/4➡️ sin ø=cos(90-ø) →sin54°= cos(90- 54)= cos36°
➡️ question given ➡️ cos²72°- sin²54°➡️ cosø= sin(90-ø) → cos 72°= sin(90-72)= sin18° → sin 18°=√5-1/4➡️ sin ø=cos(90-ø) →sin54°= cos(90- 54)= cos36° →cos36°=√5+1/4
➡️ question given ➡️ cos²72°- sin²54°➡️ cosø= sin(90-ø) → cos 72°= sin(90-72)= sin18° → sin 18°=√5-1/4➡️ sin ø=cos(90-ø) →sin54°= cos(90- 54)= cos36° →cos36°=√5+1/4➡️ cos²72°- sin 54°
➡️ question given ➡️ cos²72°- sin²54°➡️ cosø= sin(90-ø) → cos 72°= sin(90-72)= sin18° → sin 18°=√5-1/4➡️ sin ø=cos(90-ø) →sin54°= cos(90- 54)= cos36° →cos36°=√5+1/4➡️ cos²72°- sin 54°➡️ (√5-1/4)²- (√5+1/4)²
➡️ question given ➡️ cos²72°- sin²54°➡️ cosø= sin(90-ø) → cos 72°= sin(90-72)= sin18° → sin 18°=√5-1/4➡️ sin ø=cos(90-ø) →sin54°= cos(90- 54)= cos36° →cos36°=√5+1/4➡️ cos²72°- sin 54°➡️ (√5-1/4)²- (√5+1/4)²➡️(1/4)²[(√5-1)²-(√5+1)²]
➡️ question given ➡️ cos²72°- sin²54°➡️ cosø= sin(90-ø) → cos 72°= sin(90-72)= sin18° → sin 18°=√5-1/4➡️ sin ø=cos(90-ø) →sin54°= cos(90- 54)= cos36° →cos36°=√5+1/4➡️ cos²72°- sin 54°➡️ (√5-1/4)²- (√5+1/4)²➡️(1/4)²[(√5-1)²-(√5+1)²]➡️ 1/16[(√5)²+(1)²-2√5-(√5)²-(1)²-2√5]
➡️ 1/16×-4√5
➡️ 1/16×-4√5➡️-√5/4
hope it will be helpful
Similar questions
English,
3 months ago
English,
3 months ago
Math,
3 months ago
English,
8 months ago
Political Science,
8 months ago