Math, asked by srujanasunkari111, 11 months ago

cos squared theta minus sin square theta

Answers

Answered by Infinitum
1

sin^{2} x+cos^{2} x=1\\cos^{2}x =1-sin^{2} x\\.: cos^{2}x-sin^{2} x=1-sin^{2} x-sin^{2} x=1-2sin^{2} x=1-2(1-cos^{2}x)=2cos^{2}x -1\\

#BAL #answerwithquality

Answered by ushmagaur
2

Correct Question: The Value of the function cos^2 \theta -sin^2\theta is

Answer:

The values of cos^2 \theta -sin^2\theta=2cos^2\theta -1

                                             =1-2sin^2\theta

                                             =cos2\theta

Step-by-step explanation:

Recall the trigonometric identity of sine and cosine functions,

sin^2\theta +cos^2\theta =1

Rewrite as follows:

sin^2\theta =1-cos^2\theta or cos^2\theta =1-sin^2\theta

Consider the given trigonometric function as follows:

cos^2 \theta -sin^2\theta ...... (1)

Three cases arises.

Case1. When sin^2\theta =1-cos^2\theta.

Substitute the value 1-cos^2\theta for sin^2\theta in the function (1) as follows:

cos^2 \theta -sin^2\theta=cos^2 \theta -(1-cos^2\theta )

Simplify as follows:

cos^2 \theta -sin^2\theta=cos^2 \theta -1+cos^2\theta

                          =2cos^2 \theta -1

Case2. When cos^2\theta =1-sin^2\theta.

Substitute the value 1-sin^2\theta for cos^2\theta in the function (1) as follows:

cos^2 \theta -sin^2\theta=(1-sin^2 \theta )-sin^2\theta

Simplify as follows:

cos^2 \theta -sin^2\theta=1-sin^2 \theta -sin^2\theta

                          =1-2sin^2 \theta

Case3. As we know the sum identity of cosine function,

cos(x+y)=cosx\ cosy-sinx\ siny

                =cos^2x-sin^2y ...... (2)

So, function (1) can also be written as follows:

cos^2 \theta -sin^2\theta=cos\theta \ cos\theta - sin\theta \ sin\theta

Comparing with the identity (1), we get

cos^2 \theta -sin^2\theta=cos(\theta + \theta)

                     =cos2\theta.

#SPJ2

Similar questions