Math, asked by Irakqnta, 1 year ago

cos squared theta minus sin square theta equal to 1 minus 10 squared theta by 1 + 10 squared theta prove the identity

Answers

Answered by pinquancaro
25

Answer and Explanation:

To prove : The identity \cos^2\theta-\sin^2\theta=\frac{1-\tan^2\theta}{1+\tan^2\theta}

Solution :

Taking RHS,

\frac{1-\tan^2\theta}{1+\tan^2\theta}

Write, \tan\theta=\frac{\sin\theta}{\cos\theta}

\frac{1-(\frac{\sin\theta}{\cos\theta})^2}{1+(\frac{\sin\theta}{\cos\theta})^2}}

\frac{1-\frac{\sin^2\theta}{\cos^2\theta}}{1+\frac{\sin^2\theta}{\cos^2\theta}}

\frac{\frac{\cos^2\theta-\sin^2\theta}{\cos^2\theta}}{\frac{\cos^2\theta+\sin^2\theta}{\cos^2\theta}}

\frac{\cos^2\theta-\sin^2\theta}{\cos^2\theta+\sin^2\theta}

\frac{\cos^2\theta-\sin^2\theta}{1}

\cos^2\theta-\sin^2\theta

=LHS

So, RHS=LHS

Answered by dubeydhruv9910
0

Step-by-step explanation:

The identity \cos^2\theta-\sin^2\theta=\frac{1-\tan^2\theta}{1+\tan^2\theta}cos

2

θ−sin

2

θ=

1+tan

2

θ

1−tan

2

θ

Solution :

Taking RHS,

\frac{1-\tan^2\theta}{1+\tan^2\theta}

1+tan

2

θ

1−tan

2

θ

Write, \tan\theta=\frac{\sin\theta}{\cos\theta}tanθ=

cosθ

sinθ

Similar questions