Math, asked by Swapnapalarapu, 11 months ago

cos teeta - sin teeta / cos teeta + sin teeta =1-√3/1+√3.Find teeta ​

Answers

Answered by bediharsiddak
1

\displaystyle\frac{\cos\theta - \sin\theta}{\cos\theta + \sin\theta } = \frac{1 - \sqrt{3}}{1 +\sqrt{3}}

\displaystyle\frac{\cos\theta - \sin\theta}{\cos\theta + \sin\theta } = \frac{\frac{1 - \sqrt{3}}{2}}{\frac{1 +\sqrt{3}}{2}} = \frac{\frac{1}{2} - \frac{\sqrt{3}}{2}}{\frac{1}{2} + \frac{\sqrt{3}}{2}}

On  comparing both sides, we get:

\displaystyle \cos\theta = \frac{1}{2} \text{ and } \sin\theta = \frac{\sqrt{3}}{2}

\displaystyle \therefore \theta = 60^{\circ}

Similar questions