cos theta/1-sin theta = 1+ sin theta / cos theta
Answers
Answer:
please make me brainlist
Step-by-step explanation:
The given equation is:
\frac{cos\theta}{1+sin{\theta}}=\frac{1-sin{\theta}}{cos{\theta}}
1+sinθ
cosθ
=
cosθ
1−sinθ
Taking the LHS of the above equation, we have
\frac{cos\theta}{1+sin{\theta}}
1+sinθ
cosθ
=\frac{cos\theta}{1+sin{\theta}}{\times}\frac{1-sin\theta}{1-sin{\theta}}
1+sinθ
cosθ
×
1−sinθ
1−sinθ
=\frac{cos\theta(1-sin\theta)}{1-sin^2{\theta}}
1−sin
2
θ
cosθ(1−sinθ)
=\frac{cos\theta(1-sin\theta)}{cos^2{\theta}}
cos
2
θ
cosθ(1−sinθ)
=\frac{1-sin{\theta}}{cos{\theta}}
cosθ
1−sinθ
=RHS
Trigonometry:-
Trigonometry
Question:-
.
Solution:-
More Information:-
Trigon metric Identities
sin²θ + cos²θ = 1
sec²θ - tan²θ = 1
csc²θ - cot²θ = 1
Trigometric relations
sinθ = 1/cscθ
cosθ = 1 /secθ
tanθ = 1/cotθ
tanθ = sinθ/cosθ
cotθ = cosθ/sinθ
Trigonmetric ratios
sinθ = opp/hyp
cosθ = adj/hyp
tanθ = opp/adj
cotθ = adj/opp
cscθ = hyp/opp
secθ = hyp/adj