Math, asked by Grandsato578, 1 year ago

Cos theta / 1 - tan theta + sin theta / 1- cot theta = (cos theta + sin theta )

Answers

Answered by veerukhugar
6

Hey mate here we go

lets \: given \: eq \: is  \: i \: will \: take \\ theta \:  =alpha( \alpha ) \\  \frac{ \cos( \alpha ) }{1 -  \tan( \alpha ) }  +  \frac{ \sin( \alpha ) }{1 -  \cot( \alpha ) } \\ lets \:  \tan( \alpha  )  =   \frac{ \sin( \alpha ) }{ \cos( \alpha ) }  \\  \cot( \alpha )  =  \frac{ \cos( \alpha ) }{ \sin( \alpha ) }  \\ nw \: put \: those \: value \: in \: that \: eq \\  \frac{ \cos( \alpha ) }{1 -  \frac{ \sin( \alpha ) }{ \cos( \alpha ) } }  +  \frac{ \sin( \alpha ) }{1 -  \frac{ \cos( \alpha ) }{  \sin( \alpha ) } }  \\  \frac{ \cos( \alpha ) }{  \frac{ \cos( \alpha) -  \sin( \alpha )  }{ \cos( \alpha ) }  }  +  \frac{ \sin( \alpha ) }{ \frac{ \sin( \alpha) -  \cos( \alpha )  }{ \sin( \alpha ) } }  \\   \frac{ { \cos}^{2} \alpha  }{ \cos( \alpha )  -  \sin( \alpha ) }   +  \frac{ { \sin }^{2} \alpha  }{ \sin( \alpha )  -  \cos( \alpha ) }  \\  ( \frac{ { \cos}^{2} \alpha  }{ \cos( \alpha )  -   \sin( \alpha )  }   -  \frac{ { \sin }^{2}  \alpha }{  \cos( \alpha  )  -  \sin( \alpha )  } ) \\ now \:   ( \frac{ { \cos }^{2} \alpha  -  { \sin }^{2}  \alpha  }{ \cos( \alpha )    -  \sin( \alpha ) } ) \\  =   ( \frac{( \cos( \alpha ) +  \sin( \alpha ) )( \cos( \alpha )  - \sin( \alpha ))  }{ \cos( \alpha )   -  \sin( \alpha ) }  \\ now \:   -   \: value \:will \: cancelled \\ u \: will \: only \: get \:  \cos( \alpha )  +  \sin( \alpha )  = r \: h \: s \\

I hope this will helps you

mark my ans as brainliest

Similar questions