Math, asked by namitadpanchal, 7 months ago

cos theta / (1-tan theta) + sin theta (1 - cot theta) =sin theta + cos theta​

Answers

Answered by itzheartcracker13
7

Step-by-step explanation:

\begin{gathered}\small{ = &gt; \frac{ \cos A }{1 - \tan A } + \frac{ \sin A }{1 - \cot A} } \\ \\ \\ \small{ = &gt; \frac{ \cos A }{1 - \frac{ \sin A }{ \cos A } } + \frac{ \sin A }{1 - \frac{ \cos A}{ \sin A } }} \\ \\ \\ \small{= &gt; \frac{ \cos A }{ \frac{ \cos A - \sin A }{ \cos A} } + \frac{ \sin A }{ \frac{ \sin A - \cos A}{ \sin A } }} \\ \\ \\ \small{ = &gt; \frac{ \cos ^{2} A }{ \cos A - \sin A} + \frac{ \sin^{2} A }{ \sin A - \cos A} } \\ \\ \\ \small{ = &gt; \bold{ - } \frac{ \cos ^{2} A}{ \sin A - \cos A } + \frac{ \sin^{2} A }{ \sin A - \cos A} } \\ \\ \\ \small{ = &gt; \frac{ \sin ^{2} A- \cos^{2} A }{ \sin A - \cos A }} \\ \\ \\ \small{= &gt; \frac{( \sin A - \cos A )( \sin A + \cos A )}{ \sin A - \cos A }} \\ \\ \\ \small{ = &gt; \sin A + \cos A} \end{gathered}=&gt;1−tanAcosA+1−cotAsinA=&gt;1−cosAsinAcosA+1−sinAcosAsinA=&gt;cosAcosA−sinAcosA+sinAsinA−cosAsinA=&gt;cosA−sinAcos2A+sinA−cosAsin2A=&gt;−sinA−cosAcos2A+sinA−cosAsin2A=&gt;sinA−cosAsin2A−cos2A=&gt;sinA−cosA(sinA−cosA)(sinA+cosA)=&gt;sinA+cosA</p><p></p><p>Hence, proved.</p><p></p><p>

Similar questions