Math, asked by HARI2503, 1 year ago

cos theta-2 cos cube theta/2 sin cube theta -sin theta =cot theta

Answers

Answered by MaheswariS
5

\underline{\textbf{To prove:}}

\mathsf{\dfrac{cos\,\theta-2\,cos^3\,\theta}{2\,sin^3\,\theta-sin\,\theta}=cot\,\theta}

\underline{\textbf{Solution:}}

\underline{\textbf{Identities used:}}

\mathsf{1.\;cos\,2A=1-2\,sin^2A}

\mathsf{2.\;cos\,2A=2\,cos^2A-1}

\textsf{Consider}

\mathsf{\dfrac{cos\,\theta-2\,cos^3\,\theta}{2\,sin^3\,\theta-sin\,\theta}}

\mathsf{=\dfrac{cos\,\theta(1-2\,cos^2\,\theta)}{sin\,\theta(2\,sin^2\,\theta-1)}}

\mathsf{=\dfrac{cos\,\theta(2\,cos^2\,\theta-1)}{sin\,\theta(1-2\,sin^2\,\theta)}}

\mathsf{=\dfrac{cos\,\theta(cos\,2\,\theta)}{sin\,\theta(cos\,2\,\theta)}}

\mathsf{=\dfrac{cos\,\theta}{sin\,\theta}}

\mathsf{=cot\,\theta}

\implies\boxed{\mathsf{\dfrac{cos\,\theta-2\,cos^3\,\theta}{2\,sin^3\,\theta-sin\,\theta}=cot\,\theta}}

Similar questions