cos theta = √2 find theta
Answers
Answered by
1
Answer:
Given, cosθ+sinθ=2–√
Also, cosθ=2–√−sinθ ……. (i)
Now, we solve cosθ+sinθ=2–√,
Squaring both sides,
(cosθ+sinθ)2=(2–√)2
cos2θ+sin2θ+2cosθsinθ=2
1+2cosθsinθ=2 [Since, sin2θ+cos2θ=1]
1+2⋅(2–√−sinθ)⋅sinθ=2 [From (i)]
1+22–√sinθ−2sin2θ=2
Re-arranging the equation,
2sin2θ−22–√sinθ+1=0
(2–√sinθ)2−2⋅2–√sinθ⋅1+(1)2=0
(2–√sinθ−1)2=0
Square rooting both sides,
2–√sinθ−1=0
2–√sinθ=1
sinθ=12√
sinθ=sin45° [Since, sin45°=12√]
Eliminating sin from both sides
θ=45°
Similar questions