Math, asked by aaryankhera, 10 months ago

cos theta =21/29 find sin theta-tan theta/2tan theta
Guys plss help......​

Answers

Answered by mysticd
0

 Given \: cos \theta = \frac{21}{29} \:--(1)

 \red {\frac{ sin \theta - tan \theta }{2tan \theta }}

= \frac{ sin \theta - \frac{sin \theta}{cos \theta }}{\frac{2sin\theta}{cos\theta}}

 = \frac{\frac{sin \theta cos \theta - sin \theta }{cos\theta}}{\frac{2sin\theta}{cos\theta}}

= \frac{sin\theta( cos \theta - 1)}{\frac{2sin\theta}{cos\theta}}

= \frac{cos \theta - 1}{\frac{2}{cos\theta} }

= \frac{1}{2} \times cos\theta ( cos\theta - 1)

= \frac{1}{2} \times \frac{21}{29} \Big( \frac{21}{29} - 1 \Big) \\= </p><p>\frac{21}{2 \times 29} \Big( \frac{21-29}{29} \Big) \\= \frac{21}{2 \times 29} \Big( \frac{-8}{29} \Big) \\= \frac{ - 84}{841}

Therefore.,

 \red {\frac{ sin \theta - tan \theta }{2tan \theta }} \green {= \frac{ - 84}{841} }

•••♪

Similar questions