Math, asked by joker76, 1 month ago

cos theta-4 sin theta=1 then sin theta +4 cos theta =?​

Answers

Answered by vijay876751ac2
6

Given :

If cos \sf\theta - 4 sin \sf\theta = 1, then sin \sf\theta + 4 cos \sf\theta =

To Find :

To find the Value of sin \sf\theta + 4 cos \sf\theta

Solution :

\sf\ cos \: \theta \:  -  \: 4 \: sin \: \theta \:  =  \: 1

\sf\ ( \: cos \: \theta \:  -  \: 4 \: sin \: \theta \: )^{2} \:  =  \: ( \: 1 \: )^{2}

{\large{\bf{⇒}}}\sf\  \:  \: cos^{2} \: \theta \:  +  \: 16 \: sin^{2} \: \theta \:  -  \: 2 \: . \: cos \: \theta \: . \: 4 \: sin \: \theta \:  =  \: 1

{\large{\bf{⇒}}}\sf\ \:  \: cos {}^{2} \: \theta \:  +  \:  {16 \: sin}^{2} \: \theta \:  \:  -  \: 8 \: sin \: \theta \: . \: cos \: \theta \:  =  \: 1 \:  \: \rule{25mm}{1pt} \: {\boxed{\sf{\red{1}}}}

Now, Let sin \theta + 4 cos \theta = K

{\large{\bf{⇒}}}\sf\ \: ( \: sin \: \theta \:  +  \: 4 \: cos \: \theta \: ) {}^{2} \:  =  \:  {k}^{2}

{\large{\bf{⇒}}}\sf\ \:  \:  {sin}^{2} \: \theta \:  +  \: 16 \: {cos}^{2} \: \theta \:  +  \: 2 \: sin \: \theta \: . \: 4 \: cos \: \theta \:  =  \:  {k}^{2}

{\large{\bf{⇒}}}\sf\ \:  \:  {sin}^{2} \: \theta \:  +  \: 16 \:  {cos}^{2} \: \theta \:  +  \: 8 \: sin \: \theta \: . \: cos \: \theta \:  =  \:  {k}^{2} \:  \: \rule{25mm}{1pt} \: {\boxed{\red{2}}}

\rule{100mm}{1pt}

\large\sf\ Now,  \: Lets  \: Add  \: Eq \:  {\boxed{\red{1}}} \:  +  \: {\boxed{\red{2}}}

 \\

\sf\  {cos}^{2} \: \theta \: + \: 16 \:  {sin}^{2} \: \theta \:  -  \:  \cancel{8 \: sin \: \theta \: cos \: \theta} \:  =  \: 1 \\ \frac{\sf\   {sin}^{2} \: \theta \:  +  \: 16 \:  {cos}^{2} \: \theta \:  +  \:  \cancel{8 \: sin \: \theta \: cos \: \theta} \:  =  \:  {k}^{2} }{\sf\ ( \:  {sin}^{2} \: \theta \:  + \:  {cos}^{2} \: \theta \: ) \:  +  \: 16 \: ( \:  {sin}^{2} \: \theta \:  +  \:  {cos}^{2} \: \theta \: ) \:  =  \: 1 \:  +  \:  {k}^{2}}

{\large{\bf{⇒}}}\sf\ \:  \: 1 \:  +  \: 16 \: (1) \:  =  \: 1 \:  +  \:  {k}^{2}

{\large{\bf{⇒}}}\sf\ \:  \: 18 \:  =  \: \cancel{1} \:  +  \:  {k}^{2} \:  \cancel{ - 1}

{\large{\bf{⇒}}}\sf\ \:  \: {k}^{2} \:  =  \: 16

{\large{\bf{⇒}}}\sf\ \:  \: k \:  =  \:  \sqrt[±]{16}

{\large{\bf{⇒}}}\sf\ \:  \: k \:  =  \: ± \: 4.

{\large{\boxed{\sf{\red{sin \: \theta \:  +  \: 4 \: cos \: \theta \:  =  \: ± \: 4.}}}}}

\rule{100mm}{1pt}

Know More :

  • The Meaning of '.' is '×'. (Multiplication)
  • The Meaning of '±' is Plus or Minus.

Identidites :

\sf\ \:  \: sin^{2} \: \theta \:  +  \: cos {}^{2} \: \theta \:  =  \: 1

\sf\ \:  \: sec {}^{2} \: \theta \:  -  \: tan {}^{2} \: \theta \:  =  \: 1

\sf\ \:  \:  {cosec}^{2} \: \theta \:  -  \:  {cot}^{2} \: \theta \:  =  \: 1

\tiny\

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions