Math, asked by hullikerisirlic, 10 months ago

cos theta by 1 minus 10 theta + sin theta by 1 minus cot theta is equal to sin theta + cos theta​

Answers

Answered by hukam0685
0

Answer:

Step-by-step explanation:

Given that:

\frac{cos\theta}{1-tan\theta}+\frac{sin\theta}{1-cot\theta}=sin\theta+cos\theta\\\\

Solution:

As we know that

tan\theta=\frac{sin\theta}{cos\theta}\\\\cot\theta=\frac{cos\theta}{sin\theta}\\\\

Put these value in the LHS

\frac{cos\theta}{1-\frac{sin\theta}{cos\theta}}+\frac{sin\theta}{1-\frac{cos\theta}{sin\theta}}\\\\

Take LCM in the denominator

\frac{cos\theta}{\frac{cos\theta-sin\theta}{cos\theta}}+\frac{sin\theta}{\frac{sin\theta-cos\theta}{sin\theta}}\\\\\frac{cos^2\theta}{cos\theta-sin\theta}+\frac{sin^2\theta}{sin\theta-cos\theta}\\\\

Take - sign common from the denominator of second term

\frac{cos^2\theta}{cos\theta-sin\theta}-\frac{sin^2\theta}{cos\theta-sin\theta}\\\\

Take LCM

\frac{cos^2\theta-sin^2\theta}{cos\theta-sin\theta}\\\\

\frac{(cos\theta-sin\theta)(cos\theta+sin\theta)}{cos\theta-sin\theta}\\\\(cos\theta+sin\theta)=RHS\\

Hence prove.

Answered by luckygirl6262
1

Answer:

follow \: the \: attchment

Attachments:
Similar questions