Math, asked by HARSHMAHAMUNI, 1 month ago

cos theta + cos^2 theta = 1 then find sin^2 theta + sin^4 theta

Answers

Answered by mathdude500
10

 \green{\large\underline{\sf{Given- }}}

\boxed{ \tt{ \: cos\theta  +  {cos}^{2}\theta  = 1}}

 \blue{\large\underline{\sf{To\:Find - }}}

\boxed{ \tt{ \:  {sin}^{2}\theta  +  {sin}^{4} \theta }}

 \red{\large\underline{\sf{Solution-}}}

Given that

\rm :\longmapsto\: \: cos\theta  +  {cos}^{2}\theta  = 1

can be rewritten as

\rm :\longmapsto\:cos\theta  = 1 -  {cos}^{2}\theta

We know,

\boxed{ \tt{ \:  {sin}^{2}x +  {cos}^{2}x = 1 \: }}

So, using this, we get

\rm :\longmapsto\:cos\theta  = {sin}^{2}\theta

On squaring both sides, we get

\rm :\longmapsto\: {cos}^{2}\theta  =  {( {sin}^{2} \theta )}^{2}

\rm :\longmapsto\:1 -  {sin}^{2}\theta  =  {sin}^{4}\theta

\bf\implies \: {sin}^{2}\theta  +  {sin}^{4} \theta  = 1

Hence,

\bf\implies \:\boxed{ \tt{ \:  {sin}^{2}\theta  +  {sin}^{4} \theta  = 1 \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Answered by ꜱᴄʜᴏʟᴀʀᴛʀᴇᴇ
24

GIVEN :-

 \cos \theta \:  +  \cos^{2}  \theta = 1

WE HAVE TO FIND :-

 \sin^{2} \theta \:  +  \:  \sin^{4} \theta

SOLUTION :-

Given that

 \rightarrow \:  \cos \theta \:  +  \cos^{2}  \theta = 1 \\

We can write it as

 \rightarrow \cos \theta \:  = 1 -  \cos^{2}  \theta

We know that,

 \sf \sin^{2}x  +  \cos^{2} x = 1

So, by using this, we get

 \rightarrow \cos  \theta =  \sin^{2}  \theta

On Squaring both sides, we get

 \rightarrow \:  \cos^{2}  \theta =  {(\sin ^{2}  \theta)}^{2}  \\   \\  \rightarrow \: 1 -  \sin^{2} \theta \:  =  \sin^{4}   \theta \\  \\  \rightarrow \:  \sin^{2} \theta  +  \sin^{4} \theta \:  = 1 \\  \\  \sf \: Hence, \\  \sin^{2}  \theta \:  +  \sin^{4}  \theta = 1

Similar questions