Math, asked by nverma1234, 10 months ago

Cos theta +cos3theta +2 cos 2theta=0

Answers

Answered by shadowsabers03
9

Given,

\longrightarrow\sf{\cos\theta+\cos(3\theta)+2\cos(2\theta)=0}

Or,

\longrightarrow\sf{\left[\cos\theta+\cos(3\theta)\right]+2\cos(2\theta)=0}

We know the sum - to - product identity,

\longrightarrow\sf{\cos A+\cos B=2\cos\left(\dfrac{A+B}{2}\right)\cos\left(\dfrac{A-B}{2}\right)}

Then,

\longrightarrow\sf{2\cos\left(\dfrac{\theta+3\theta}{2}\right)\cos\left(\dfrac{\theta-3\theta}{2}\right)+2\cos(2\theta)=0}

\longrightarrow\sf{2\cos\left(2\theta\right)\cos\left(-\theta\right)+2\cos(2\theta)=0}

Since \sf{\cos(-\theta)=\cos\theta,}

\longrightarrow\sf{2\cos\left(2\theta\right)\cos\theta+2\cos(2\theta)=0}

\longrightarrow\sf{2\cos\left(2\theta\right)\big[\cos\theta+1\big]=0}

This implies,

\longrightarrow\sf{\cos(2\theta)=0\quad\quad OR\quad\quad \cos\theta=-1}

\Longrightarrow\sf{2\theta=\dfrac{(2n+1)\pi}{2}\quad\quad OR\quad\quad \theta=(2n+1)\pi}

\longrightarrow\sf{\underline{\underline{\theta=\dfrac{(2n+1)\pi}{4}}}\quad\quad OR\quad\quad\underline{\underline{\theta=(2n+1)\pi}}}

for every \sf{n\in\mathbb{Z}.}

Answered by amitnrw
7

Given : Cosθ + Cos3θ  + 2Cos2θ = 0

To find : Value of θ (  theta)

Solution:

Cosθ + Cos3θ  + 2Cos2θ = 0

using  Cos3θ = 4Cos³θ - 3Cosθ    & Cos2θ = 2Cos²θ - 1

=> Cosθ +  4Cos³θ - 3Cosθ + 2( 2Cos²θ - 1) = 0

=> Cosθ +  4Cos³θ - 3Cosθ + 4Cos²θ - 2 =0

=>  4Cos³θ  + 4Cos²θ - 2Cosθ  - 2 = 0

=>  2Cos³θ  + 2Cos²θ -  Cosθ  - 1 = 0

=> 2Cos²θ(Cosθ + 1) - 1(Cosθ + 1) = 0

=> (  2Cos²θ- 1 ) (Cosθ + 1)  = 0

=> Cos²θ = 1/2   or Cosθ = -1

=> Cosθ = ± 1/√2  , - 1

θ = (2n + 1)π/4  , (2n + 1)π

Learn more:

If 2 sin x = sin y and 2 cos x = 3 cos y then find the value of tan (x + y)

https://brainly.in/question/10685245

If sin θ + cos θ = 2 , then evaluate : tan θ + cot θ - Brainly.in

https://brainly.in/question/7871635

Similar questions