Math, asked by vsriaditya7014, 9 months ago

Cos theta.cosec theta - sin theta .sec theta/ cos theta + sin theta= cosec theta - sec theta

Answers

Answered by sandy1816
29

Answer:

your answer attached in the photo

Attachments:
Answered by mysticd
48

 LHS =\red{\frac{cos \theta Cosec \theta - sin \theta sec \theta }{cos \theta + sin \theta }}

 = \frac{cos \theta \times \frac{1}{sin \theta} - sin \theta \frac{1}{ cos \theta }}{(cos \theta + sin \theta) }

 = \frac{ \frac{ cos^{2} \theta - sin^{2} \theta }{cos \theta sin \theta }}{ ( cos \theta + sin \theta ) }

 = \frac{( cos^{2} \theta - sin^{2} \theta) }{cos \theta sin \theta ( cos \theta + sin \theta ) }

 = \frac{( cos \theta - sin\theta)\cancel {(cos \theta + sin \theta )} }{cos \theta sin \theta \cancel {( cos \theta + sin \theta )} }

 = \frac{ cos \theta - sin \theta }{cos \theta sin \theta }

 = \frac{cos \theta}{cos \theta sin \theta} - \frac{sin \theta}{ cos \theta sin \theta }

 = \frac{1 }{ sin \theta} - \frac{1}{ cos \theta}

 \green {= Cosec \theta - Sec \theta }

 = RHS

•••♪

Similar questions