Math, asked by sayantikagh, 6 months ago

(cos theta cosec theta - sin theta sec theta) / cos theta + sin theta = cosec theat - sec theat ​

Answers

Answered by Anonymous
7

\;\;\underline{\textbf{\textsf{ Given:-}}}

 \sf{LHS  =  \dfrac{cos \theta \: cosec \theta - sin\theta \: sec\theta}{cos \theta + sin \theta} }

\sf{RHS = cosec \theta - sec \theta }

\;\;\underline{\textbf{\textsf{ To Prove:-}}}

• L.H.S = R.H.S

\;\;\underline{\textbf{\textsf{ Proof :-}}}

 \sf{LHS  =  \dfrac{cos \theta \: cosec \theta - sin\theta \: sec\theta}{cos \theta + sin \theta} }

 \sf{ \longrightarrow \dfrac{cos \theta \dfrac{1}{sin \theta} - sin \theta \dfrac{1}{cos \theta}  }{cos \theta + sin \theta} }

 \sf{ \longrightarrow  \dfrac{ \dfrac{cos \theta}{sin \theta} -  \dfrac{sin \theta}{cos \theta}  }{cos \theta + sin \theta} }

 \sf{ \longrightarrow \dfrac{ \dfrac{ {cos}^{2} \theta -  {sin}^{2}  \theta }{sin \theta \: cos \theta} }{(cos \theta +sin \theta) } }

 \sf{\longrightarrow  \dfrac{ \dfrac{ \cancel{(cos \theta + sin\theta})(cos\theta - sin\theta}{sin\theta \: cos\theta} }{ \cancel{(cos \theta + sin\theta)} }}

 \sf{  \longrightarrow \dfrac{cos \theta - sin \theta}{sin \theta \: cos \theta} }

 \sf{  \longrightarrow \dfrac{1}{sin \theta} -  \dfrac{1}{cos \theta}  }

\sf{\longrightarrow cosec \theta - sec \theta }

\;\;\underline{\textbf{\textsf{ Hence -}}}

LSH = RHS

( Proved)

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\;\;\underline{\textbf{\textsf{Remember that :-}}}

 \sf{ cosec\theta =  \dfrac{1}{sin\theta} }

 \sf{  sec\theta =  \dfrac{1}{cos\theta} }

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions