Math, asked by sayantikagh, 6 months ago

(cos theta cosec theta - sin theta sec theta) / cos theta + sin theta = cosec theat - sec theat ​

Answers

Answered by sonisiddharth751
3

Prove that :-

 \sf \:  \dfrac{cos \theta.cosec \theta- sin\theta.sec\theta}{cos\theta + sin\theta}  = cosec\theta - sec\theta

some informations :-

 \sf \blue \bigstar \: \:  cosec \theta \:  =  \dfrac{1}{sin\theta}  \\  \\  \sf \blue \bigstar \: \:sec \theta\:  =  \frac{1}{cos\theta}

 \sf \blue \bigstar cos²θ − sin²θ = (cosθ + sinθ)(cosθ − sinθ)

proof :-

LHS

 \sf \:  \dfrac{cos \theta.cosec \theta- sin\theta.sec\theta}{cos\theta + sin\theta}  \\  \\  \sf \blue \implies \dfrac{cos \theta. \dfrac{1}{sin \theta}  - sin \theta. \dfrac{1}{cos \theta} }{cos \theta + sin \theta}  \\  \\   \sf \blue \implies \:  \dfrac{ \dfrac{cos  \theta}{sin\theta} -  \dfrac{sin\theta}{cos\theta}  }{cos\theta + sin\theta}  \\  \\  \bf \: taking \: LCM  \\  \\ \sf \blue \implies \:  \dfrac{ \dfrac{ {cos \theta}^{2}  -  {sin}^{2}  \theta}{sin \theta.cos \theta} }{cos \theta + sin \theta}  \\  \\

using :- a² – b² = (a + b)(a – b)

\sf \blue \implies \:   \dfrac{ \dfrac{(cos\theta + sin\theta)(cos\theta - sin\theta)}{sin\theta.cos\theta} }{cos\theta + sin\theta}  \\  \\ \sf \blue \implies \:   \dfrac{(cos\theta + sin\theta)(cos\theta - sin\theta)}{sin\theta.cos\theta}  \times  \dfrac{1}{cos\theta + sin\theta}  \\  \\  \sf \blue \implies \:   \dfrac{(\cancel{cos\theta + sin\theta})(cos\theta - sin\theta)}{cos\theta.sin\theta}  \times  \dfrac{1}{ \cancel{cos\theta + sin\theta}  } \\  \\ \sf \blue \implies \:   \frac{cos\theta - sin\theta}{cos\theta.sin\theta}  \\  \\ \sf \blue \implies \: \frac{cos \theta}{cos\theta.sin\theta}  -  \frac{sin \theta}{cos\theta.sin\theta}  \\  \\ \sf \blue \implies \: \frac{ \cancel{cos \theta}}{\cancel{cos\theta}.sin\theta}  -  \frac{\cancel{sin \theta}}{cos\theta.\cancel{sin\theta}  } \\  \\ \sf \blue \implies \: \frac{1}{sin \theta}  -  \frac{1}{cos \theta}  \\  \\ \sf \blue \implies \: cosec \theta \:  - sec  \theta

= RHS

hence,

LHS = RHS

some more formula :-

★ sinθ/cosθ = tanθ

★ cosθ/sinθ = cotθ

★ sin²θ + cos²θ = 1

★ 1 – sin²θ = cos²θ

★ 1 – cos²θ = sin²θ

★ 1 + tan²θ = sec²θ

★ sec²θ – 1 = tan²θ

★ sec²θ – tan²θ = 1

★ 1 + cot²θ = cosec²θ

★ cosec²θ – 1 = cot²θ

★ cosec²θ – cot²θ = 1

Similar questions