cos theta*cot theta / 1 + sin theta = cosec theta - 1 ,
Prove
Answers
Answered by
1
Hi ,
Here I am using A instead of theta.
LHS = cosA cotA/( 1 + sinA )
= [ cosA( cosA/sinA )]/( 1 + sinA )
= ( cos²A )/[ sinA( 1 + sinA ) ]
= ( 1 - sin²A )/[ sinA ( 1 + sinA ) ]
= ( 1 + sinA )( 1 - sinA )/ [ sinA ( 1 + sinA ) ]
after cancellation , we get
= ( 1 - sinA )/sinA
= 1/sinA - sinA/sinA
= Cosec A - 1
= RHS
I hope this helps you.
: )
Here I am using A instead of theta.
LHS = cosA cotA/( 1 + sinA )
= [ cosA( cosA/sinA )]/( 1 + sinA )
= ( cos²A )/[ sinA( 1 + sinA ) ]
= ( 1 - sin²A )/[ sinA ( 1 + sinA ) ]
= ( 1 + sinA )( 1 - sinA )/ [ sinA ( 1 + sinA ) ]
after cancellation , we get
= ( 1 - sinA )/sinA
= 1/sinA - sinA/sinA
= Cosec A - 1
= RHS
I hope this helps you.
: )
meghanaranitha:
Thanks
Answered by
4
Hi,
Please see the attached file!
Thanks
Please see the attached file!
Thanks
Attachments:
Similar questions