Math, asked by chunchumanideep4, 10 months ago

cos theta equal to root 10 find tan theta​

Answers

Answered by BrainlyConqueror0901
16

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{tan\:\theta=\frac{3\iota}{\sqrt{10}}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt: \implies cos \: \theta =  \sqrt{10}  \\  \\ \red{\underline \bold{To \: Find:}} \\  \tt:  \implies tan \:  \theta = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies tan \:  \theta \\  \\ \tt:  \implies  \frac{sin \:  \theta}{cos \:  \theta}  \\  \\ \tt:  \implies  \frac{sin \:  \theta}{ \sqrt{10} }  \\  \\  \tt \circ \: sin \:  \theta =  \sqrt{1-cos^{2}  \:  \theta }  \\  \\  \tt \circ \: sin \:  \theta =  \sqrt{1- (\sqrt{10} )^{2}  }  \\  \\  \tt  \circ \: sin \:  \theta =  \sqrt{1-10}  \\  \\  \tt \circ sin \:  \theta =  \sqrt{-9}=\sqrt{9}\iota  \\  \\ \tt:  \implies  \sqrt{\frac{9 }{ 10 }}\iota  \\  \\  \green{\tt:  \implies  \frac{3\iota}{\sqrt{10} }}  \\   \\   \green{\tt \therefore tan \:  \theta =  \frac{3\iota}{\sqrt{10} } }

Answered by AdorableMe
113

Given:-

cosθ = √10

To find:-

The value of tanθ.

Solution:-

We know that, cosθ = b/h

⇒b/h = √10

So, here b = √10 and h = 1

Here we see that b>h, which is impossible.

Moving ahead with an imaginary value, let the values remain as they are.

Now, tanθ = sinθ/cosθ

⇒tanθ = sinθ/√10

sinθ = √(1-cos²θ)

⇒sinθ = √[1-(√10)²]

⇒sinθ = √(-9)

Root of a negative number is impossible to be operated.

So, let √(-9) = √9 i

tanθ = √9 i/√10

\boxed{\implies tan\theta = \frac{3 i}{\sqrt{10} } }

Similar questions
World Languages, 10 months ago