Cos theta minus alpha equals to b sin theta + beta equals to q then prove p square + q square minus 2 pq sin alpha + beta = 2 cos square alpha + beta
Answers
The correct equation is: p square + q square minus 2 pq sin alpha + beta = cos square alpha + beta
Given:
Cos theta minus alpha equals to b sin theta + beta equals to q
cos (θ - α) = p, sin (θ + β) = q .......(1)
To prove:
p square + q square minus 2 pq sin alpha + beta = cos square alpha + beta
p² + q² - 2 pq sin (α + β) = cos² (α + β)
Proof:
Let us consider,
α + β = (θ + β) - (θ - α)
taking sin on both the sides, we get,
sin (α + β) = sin [ (θ + β) - (θ - α) ]
sin (α + β) = sin (θ + β) cos (θ - α) - cos (θ + β) sin (θ - α)
sin (α + β) = qp - √(1 - q²) √(1 - p²) .......(2)
w.k.t cos² x = 1 - sin² x, so we get,
cos² (α + β) = 1 - sin² (α + β)
∴ cos² (α + β) = 1 - [ qp - √(1 - q²) √(1 - p²) ]²
further solving, we get,
cos² (α + β) = p² + q² - 2 p²q² + 2 pq [ √(1 - q²) √(1 - p²) ] .........(3)
Now consider,
p² + q² - 2 pq sin (α + β)
= p² + q² - 2 pq [ qp - √(1 - q²) √(1 - p²) ]
= p² + q² - 2 p²q² + 2 pq [ √(1 - q²) √(1 - p²) ]
∴ p² + q² - 2 pq sin (α + β) = p² + q² - 2 p²q² + 2 pq [ √(1 - q²) √(1 - p²) ]
using (3), we get,
p² + q² - 2 pq sin (α + β) = cos² (α + β)
Hence proved.