cos theta minus sin theta + 1 upon cos theta + sin theta minus 1 equal to cosec theta + cot theta
Answers
Answered by
2
Attachments:
AmritanshuKeshri:
hello
Answered by
1
Proper Question:
Cosθ - Sinθ +1 ÷ Cosθ + Sinθ - 1 = Cosecθ + Cot θ
Step By Step Explanation:
Cosθ - Sinθ +1 ÷ Cosθ + Sinθ - 1 = Cosecθ + Cot θ
✏ Cosθ - Sinθ +1 ÷ Cosθ + Sinθ - 1
✏ Cosθ/Sinθ - Sinθ/Sinθ + 1 /Sinθ ÷ Cosθ/Sinθ + Sinθ/Sinθ - 1/Sinθ
✏ Cotθ - 1 + Cosecθ ÷ Cotθ + 1 - Cosecθ
✏ Cotθ+Cosecθ - 1 ÷ Cotθ - Cosecθ + 1
✏ Cotθ + Cosecθ - (Cosec²θ - Cot²θ) ÷ Cotθ - Cosecθ + 1
✏ (Cotθ + Cosecθ) [ 1 -(Cotθ - Cosecθ)] ÷ Cot θ - Cosecθ + 1
✏ (Cotθ + Cosecθ) (Cotθ - Cosecθ +1) ÷ Cotθ - Cosecθ +1
✏ Cancelled {Cotθ - Cosecθ +1} on upper and lower Side!
✏ Cot θ + Cosec θ
✒ Cosec θ + Cot θ
It's Proved!
Cosθ - Sinθ +1 ÷ Cosθ + Sinθ - 1 = Cosecθ + Cot θ
Step By Step Explanation:
Cosθ - Sinθ +1 ÷ Cosθ + Sinθ - 1 = Cosecθ + Cot θ
✏ Cosθ - Sinθ +1 ÷ Cosθ + Sinθ - 1
✏ Cosθ/Sinθ - Sinθ/Sinθ + 1 /Sinθ ÷ Cosθ/Sinθ + Sinθ/Sinθ - 1/Sinθ
✏ Cotθ - 1 + Cosecθ ÷ Cotθ + 1 - Cosecθ
✏ Cotθ+Cosecθ - 1 ÷ Cotθ - Cosecθ + 1
✏ Cotθ + Cosecθ - (Cosec²θ - Cot²θ) ÷ Cotθ - Cosecθ + 1
✏ (Cotθ + Cosecθ) [ 1 -(Cotθ - Cosecθ)] ÷ Cot θ - Cosecθ + 1
✏ (Cotθ + Cosecθ) (Cotθ - Cosecθ +1) ÷ Cotθ - Cosecθ +1
✏ Cancelled {Cotθ - Cosecθ +1} on upper and lower Side!
✏ Cot θ + Cosec θ
✒ Cosec θ + Cot θ
It's Proved!
Similar questions