Math, asked by pinkpanther3031, 3 months ago

cos theta minus sin theta plus one divided by cos theta plus sin theta minus one

Answers

Answered by TheWonderWall
3

\large\sf\underline{Given}

\sf\:\frac{Cosθ-Sinθ+1}{Cosθ+Sinθ-1}

\large\sf\underline{Solution}

Dividing the numerator and denominator by Sin θ

\large\sf⇨\:\frac{\frac{Cosθ}{Sinθ}-\frac{Sinθ}{Sinθ}+\frac{1}{Sinθ}}{\frac{Cosθ}{Sinθ}+\frac{Sinθ}{Sinθ}-\frac{1}{Sinθ}}

\sf⇨\:\frac{Cosθ-1+Cosecθ}{Cotθ+1-Cosecθ}

\sf⇨\:\frac{Cotθ+Cosecθ-1}{Cotθ-Cosecθ+1}

\sf⇨\:\frac{Cotθ+Cosecθ-(Cosec^{2}θ-Cot^{2} θ)}{Cotθ-Cosecθ+1}

\tt\pink{[∵\:Cosec^{2}θ=1+Cot^{2}]}

\sf⇨\:\frac{Cotθ+Cosecθ-[(Cosecθ-Cotθ)(Cosecθ+Cotθ)]}{Cotθ-Cosecθ+1}

\sf⇨\:\frac{Cotθ+Cosecθ[1-Cosecθ+cotθ]}{1-Cosecθ+cotθ}

\sf⇨\:Cotθ+cosecθ

  • Hope uh understand :)
Similar questions