Math, asked by bhagyashri10, 1 year ago

cos theta + sin (270+ theta) - sin (270- theta) + cos ( 180+ theta ) = 0​

Answers

Answered by Ricky17403
49

Step-by-step explanation:

LHS=cosθ+sin(270+θ)-sin(270-θ)+cos(180+θ)

=cosθ-cosθ+cosθ-cosθ (because sin(270+θ)=-cosθ,-sin(270-θ)=cosθ,cos(180+θ)=-cosθ)

=0

=RHS

ask if you have any questions:)

Answered by FelisFelis
10

\cos \theta + \sin (270+ \theta) - \sin (270- \theta) + \cos ( 180+ \theta ) = 0 Proved.

Step-by-step explanation:

Consider the provided information.

\cos \theta + \sin (270+ \theta) - \sin (270- \theta) + \cos ( 180+ \theta ) = 0

Consider the Left hand side of the equation.

\cos \theta+\sin[180+(90+\theta)]-\sin[180+(90- \theta)] + \cos ( 180+ \theta )

Use the identity: \sin(180+\theta)=-\sin\theta,\cos(180+\theta)=-\cos\theta

\cos \theta-\sin(90+\theta)+\sin(90- \theta) -\cos\theta

Use the identity: \sin(90+\theta)=\cos\theta,\sin(90-\theta)=\cos\theta

\cos \theta-\cos\theta+\cos\theta -\cos\theta

0

LHS = RHS

Hence, proved

#Learn more

Prove sin(90°-x) = cos x.

https://brainly.in/question/9097963

Similar questions