Math, asked by nikeshammu, 1 year ago

cos theta-sin theta+1/cos theta+sin theta-1 =cosec theta+cot theta​

Answers

Answered by Anonymous
78

correct question :

\frac{cos\theta - sin\theta + 1}{cos\theta + sin\theta - 1}  =  cosec\theta + cot\theta

Answer:

Take L.H.S

\frac{cos\theta - sin\theta + 1}{cos\theta + sin\theta - 1}

Dividing the Numerator and Denominator by,

sin\theta

we get ,

 =  >  \frac{ \frac{cos\theta}{sin \theta} -  \frac{sin \theta}{sin \theta }  +  \frac{1}{sin\theta}  }{ \frac{cos \theta}{sin \theta} +  \frac{sin \theta}{sin \theta}  -  \frac{1}{sin \theta}  }  \\  \\  =  >  \frac{cot \theta  - 1 + cosec \theta}{ \cot \theta   +  1  - cosec \theta \ }

_________________________

Using Identity:

 {coses }^{2}  \theta = 1 +  {cot}^{2} \theta \:  \\  \\  {cosec}^{2} \theta -  {cot}^{2} \theta = 1

_________________________

 =  >  \frac{(cosec \theta + cot \theta) - ( {cosec}^{2}\theta -  {cot}^{2}\theta}{1 + cot \theta - cosec \theta}

 \boxed{(a + b)( a- b) =  {a}^{2} -  {b}^{2}}

 =  >  \frac{(cose c\theta + cot \theta) - (cosec \theta  + cot \theta)(cosec \theta   - cot \theta) }{1 + cot \theta - cosec \theta}  \\  \\ take \: commom  ...(cosec \theta  + cot \theta)  \\  \\  =  >  \frac{(cosec \theta  + cot \theta)  \times1 -(  cosec \theta  -  cot \theta) }{1 + cot \theta - cosec \theta}  \\  \\  =  >  \frac{(cosec \theta + cot \theta) \times (1 + cot \theta - cosec \theta)}{1 + cot \theta - cosec \theta}  \\  \\  =  > cosec \theta + cot \theta = r.h.s

Hence L.H.S = R.H.S

Similar questions