Math, asked by anonymous2k21, 4 months ago

(cos theta + sin theta)^2 + (cos theta - sin theta)^2 is equal to



Mathematics​

Answers

Answered by sattibabuchelluri131
57

Answer:

equal to 2

Step-by-step explanation:

2(cos^2 thita+sin^2thita) = 2(1)=2

Answered by BrainlyPopularman
181

GIVEN :

 \\ \implies \tt( \cos \theta + \sin\theta)^2 + ( \cos \theta -  \sin \theta)^2 \\

TO FIND :

• Value of given value = ?

SOLUTION :

• Let the given value –

 \\ \implies \tt P = ( \cos \theta + \sin\theta)^2 + ( \cos \theta -  \sin \theta)^2 \\

• Using identity –

 \\ \longrightarrow \tt (a+b)^2 = a^2 +  {b}^{2} + 2ab\\

• And –

 \\ \longrightarrow \tt (a - b)^2 = a^2 +  {b}^{2} -2ab\\

• So that –

 \\ \implies \tt P = [\cos^{2} \theta + \sin^2\theta +2 \cos \theta \sin \theta ]+[\cos^{2} \theta + \sin^2\theta  - 2 \cos \theta \sin \theta ]\\

 \\ \implies \tt P = \cos^{2} \theta + \sin^2\theta +2 \cos \theta \sin \theta+\cos^{2} \theta + \sin^2\theta  - 2 \cos \theta \sin \theta\\

 \\ \implies \tt P = (\cos^{2} \theta  + \cos^{2} \theta)+(\sin^2\theta +  \sin^2\theta)+(2 \cos \theta \sin \theta - 2 \cos \theta \sin \theta)\\

 \\ \implies \tt P = 2\cos^{2} \theta  +2\sin^2\theta+0\\

 \\ \implies \tt P = 2\cos^{2} \theta  +2\sin^2\theta\\

• We know that –

 \\ \longrightarrow \tt \sin^2 \theta +\cos^2 \theta = 1\\

• So that –

 \\ \implies \tt P = 2(1)\\

 \\\large\implies{ \boxed{\tt P = 2}}\\

Similar questions