Math, asked by sushantpandey143, 11 months ago

(cos theta+sin theta) :(cos theta-sin theta) =(√3+1): (√3-1)
Then find sec theta

please answer seriously...​

Answers

Answered by rishu6845
6

Answer:

\bold{sec \alpha  =  \dfrac{2}{ \sqrt{3} }}

Step-by-step explanation:

\bold{Given} =  >  \\  \dfrac{cos \alpha + sin \alpha  }{cos \alpha  - sin \alpha }  =  \dfrac{ \sqrt{3}  + 1}{ \sqrt{3} - 1 }

to \: find =  > value \: of \: sec \alpha

\bold{Concept \: used} =  > if \\  \dfrac{a}{b}  =  \dfrac{c}{d}  \\ applying \: componendo \: and \: dividendo \\  =  >  \dfrac{a + b}{a - b}  =  \dfrac{c + d}{c - d}

\bold{Solution} =  >  \\  \dfrac{cos \alpha  + sin \alpha }{cos \alpha  - sin \alpha }  =  \dfrac{ \sqrt{3} + 1 }{ \sqrt{3}  - 1}

applying \: componendo \: and \: dividendo \:

 =  >  \dfrac{cos \alpha  + sin \alpha  + cos \alpha  - sin \alpha }{cos \alpha  + sin \alpha  - cos \alpha  + sin \alpha }  =  \dfrac{ \sqrt{3 }  + 1 +  \sqrt{3} - 1 }{ \sqrt{3}  + 1 -  \sqrt{3} + 1 }

 =  >  \dfrac{2cos \alpha }{2sin \alpha }  =  \dfrac{2 \sqrt{3} }{2}

 =  >  \dfrac{cos \alpha }{sin \alpha }  =  \dfrac{ \sqrt{3} }{1}

 =  > cot \alpha  =  \sqrt{3}

 =  > cot \alpha  = cot \: 30^{0}

 =  >  \:  \:  \alpha  = 30 ^{0}

 =  > sec \alpha  =s ec30 ^{0}

 =  > sec \alpha  =  \dfrac{2}{ \sqrt{3} }

Answered by Anonymous
2

see to the attachment given ......

Attachments:
Similar questions