Cos theta +sin theta = root 2 cos theta then show cos theta- sin theta = root 2 sin theta
Answers
Answered by
1
Answer:
Step-by-step explanation:
Given: cos theta + sin theta = cos theta
Thus, sin theta = cos theta ( -1)
cos theta =
=
=
= sin theta(+1)
= sin theta + sin theta
Thus, cos theta - sin theta = sin theta
Answered by
0
cosx + sinx = √2 cosx
sinx = √2 cosx - cosx
= cosx (√2 - 1)
cosx = sinx / (√2 - 1)
To prove:
LHS
cosx - sinx
sinx/(√2-1) - sinx
(sinx-√2sinx +sinx)/(√2-1)
(2sinx - √2sinx)/(√2-1)
[√2sinx(√2-1)]/(√2-1)
= √2sinx = RHS
Similar questions