Math, asked by 4ghbnk, 1 year ago

Cos theta - sin theta = root 2 sin theta then prove cos theta + sin theta = root cos theta

Answers

Answered by Anonymous
10

\large\underline\mathfrak{\sf{\red{Question-}}}

If CosØ - SinØ = √2SinØ, then prove that CosØ + SinØ = √2CosØ

\large\underline\mathfrak{\sf{\red{Explanation-}}}

CosØ - SinØ = √2SinØ ( Given )

Squaring both sides,

(CosØ - SinØ)² = (√2SinØ)²

( CosØ - SinØ )² = Cos²Ø + Sin²Ø - 2CosØSinØ

\implies Cos²Ø + Sin²Ø - 2CosØSinØ = 2Sin²Ø

\implies Cos²Ø - 2CosØSinØ = 2Sin²Ø - Sin²Ø

\implies Cos²Ø - 2CosØSinØ = Sin²Ø

\implies Sin²Ø + 2CosØSinØ = Cos²Ø

Adding Cos²Ø both sides,

\implies Sin²Ø + 2CosØSinØ + Cos²Ø = Cos²Ø + Cos²Ø

( SinØ + CosØ )² = Sin²Ø + 2CosØSinØ + Cos²Ø

\implies ( SinØ + CosØ )² = 2Cos²Ø

\implies SinØ + CosØ = √(2Cos²Ø)

\implies SinØ + CosØ = √2CosØ

Hence proved!

_______________________

#AnswerWithQuality

#BAL

Answered by sandy1816
0

Answer:

Your answer attached in the photo

Attachments:
Similar questions