Physics, asked by hardi9828, 13 hours ago

Cos theta + sin theta / sin theta - cos theta = 5/3 find tan theta

Answers

Answered by Anonymous
10

Given :-

 \:  \:  \:  \:  \:  \:  \:  \:  \bullet \:  \sf \:  \dfrac{sin \theta + cos \theta}{sin \theta - cos \theta}  =  \dfrac{5}{3}

To find :-

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \:  \: tan \theta

SOLUTION :-

• Do cross multiplication

 \:  \sf \:  {(sin \theta + cos \theta)3} \ =  {5} (sin \theta - cos \theta)

  \:  \sf \:  {3sin \theta +3 cos \theta} \ =  {5} sin \theta - 5cos \theta

• Transposing like terms a side

 \sf \:  \: 3sin \theta - 5sin \theta =   \:  - 5cos \theta - 3cos \theta

 \sf \:  \:  - 2sin \theta  =   \:  - 8cos \theta

 \sf \:  \:  sin \theta  =   \:  4cos \theta

 \sf \:  \dfrac{sin \theta}{cos \theta}  = 4

From trigonometric relations sinA/cosA = tanA

  \underline{   \boxed{ \sf \:  {tan \theta}  = 4}}

So, the Required answer tanθ is 4 .

Know more :-

ㅤㅤTrigonometric Identities:-

•sin²θ + cos²θ = 1

•sec²θ - tan²θ = 1

•csc²θ - cot²θ = 1

ㅤTrigonometric relations:-

•sinθ = 1/cscθ

•cosθ = 1 /secθ

•tanθ = 1/cotθ

•tanθ = sinθ/cosθ

•cotθ = cosθ/sinθ

ㅤㅤTrigonometric ratios:-

•sinθ = opp/hyp

•cosθ = adj/hyp

•tanθ = opp/adj

•cotθ = adj/opp

•cscθ = hyp/opp

secθ = hyp/adj

Similar questions