cos theta upon 1 minus sin theta + cos theta upon 1 + sin theta equals 4
Answers
Answered by
0
Hello mate!!
Answer:
θ=π3 or 60∘
Explanation:
Okay. We've got:
cosθ1−sinθ+cosθ1+sinθ=4
Let's ignore the RHS for now.
cosθ1−sinθ+cosθ1+sinθ
cosθ(1+sinθ)+cosθ(1−sinθ)(1−sinθ)(1+sinθ)
cosθ((1−sinθ)+(1+sinθ))1−sin2θ
cosθ(1−sinθ+1+sinθ)1−sin2θ
2cosθ1−sin2θ
According to the Pythagorean Identity,
sin2θ+cos2θ=1. So:
cos2θ=1−sin2θ
Now that we know that, we can write:
2cosθcos2θ
2cosθ=4
cosθ2=14
cosθ=12
θ=cos−1(12)
θ=π3, when 0≤θ≤π.
In degrees, θ=60∘ when 0∘≤θ≤180∘
Hope it helpful
Answer:
θ=π3 or 60∘
Explanation:
Okay. We've got:
cosθ1−sinθ+cosθ1+sinθ=4
Let's ignore the RHS for now.
cosθ1−sinθ+cosθ1+sinθ
cosθ(1+sinθ)+cosθ(1−sinθ)(1−sinθ)(1+sinθ)
cosθ((1−sinθ)+(1+sinθ))1−sin2θ
cosθ(1−sinθ+1+sinθ)1−sin2θ
2cosθ1−sin2θ
According to the Pythagorean Identity,
sin2θ+cos2θ=1. So:
cos2θ=1−sin2θ
Now that we know that, we can write:
2cosθcos2θ
2cosθ=4
cosθ2=14
cosθ=12
θ=cos−1(12)
θ=π3, when 0≤θ≤π.
In degrees, θ=60∘ when 0∘≤θ≤180∘
Hope it helpful
Answered by
6
ĀNSWĒR ⬆⬆
Theta will be 60°
THANKS ❤
#RÔYÂL CHÔRÎ ♥
Theta will be 60°
THANKS ❤
#RÔYÂL CHÔRÎ ♥
Attachments:
Similar questions