Math, asked by madhuriautade01, 11 months ago

Cos thetha/1-sin thetha + sin theta/1-cos theta +1 = sin theta * cos theta/ 1-sin theta* 1-cos theta. Prove this

Answers

Answered by princetyagi368
0

sinθ - cosθ +1 )/(sinθ +cosθ -1)

dividing numerator and denominator by cosθ

[(sinθ - cosθ +1 )cosθ]/[(sinθ +cosθ -1)/cosθ]

=(tanθ -1 + secθ )/(tanθ +1 - sec θ)

=(tanθ + secθ -1)/(tanθ - sec θ+1)

As, sec²θ- tan²θ = 1

(secθ -tanθ)(secθ +tanθ) = 1

putting this in numerator,

[(tanθ + secθ -(sec²θ- tan²θ)]/(tanθ - sec θ+1)

=[(tanθ + secθ) -(secθ- tanθ)(secθ+tanθ)]/(tanθ - sec θ+1)

=(tanθ+secθ)[1- (secθ - tanθ)]/(tanθ - sec θ+1)

=(tanθ+secθ)[1- secθ + tanθ)]/(tanθ - sec θ+1)

=(tanθ+secθ)

Now, multiplying and dividing by (secθ- tanθ)

[(tanθ+secθ)×(secθ- tanθ)]/(secθ- tanθ)

=(sec²θ- tan²θ)/(secθ- tanθ)

= 1/(secθ- tanθ) 

=RHS

hope it helps u.......✌✌

Answered by rohitkumarwadwale
0

dryuuyteruuytryiitrrf

Similar questions