Cos(x-20)=sin(3x-10)
Answers
Answered by
1
cos(x-20)=sin(3x-10)
→ sin (90˚-(x-20)) = sin(3x-10)
→ 90-(x-20)= 3x-10
→90-x+20=3x-10
→110-x= 3x-10
→110+10=3x-x
→ 120= 2x
→x=60
HENCE, value of x is 60
HOPE IT HELPS YOU
→ sin (90˚-(x-20)) = sin(3x-10)
→ 90-(x-20)= 3x-10
→90-x+20=3x-10
→110-x= 3x-10
→110+10=3x-x
→ 120= 2x
→x=60
HENCE, value of x is 60
HOPE IT HELPS YOU
ashish5597:
Abe wrong ha
Answered by
1
✌️✌️Hi ,
This is related to Trigonometric Ratios of Complementary Angles.
_____________________________
As we know that two angles are said to be complementary if their
sum equals 90° .
i ) sin ( 90 - A ) = cos A
ii ) cos ( 90 - A ) = sin A
_____________________________
According to the problem ,
a ) sin ( x - 20 ) = cos ( 3x - 10 )
⇒ sin ( x - 20 ) = sin [ 90 - ( 3x - 10 ) ]
⇒ x - 20 = [ 90 - ( 3x - 10 ) ]
⇒ x - 20 = 90 - 3x + 10
⇒ x + 3x = 90 + 10 + 20
⇒ 4x = 120
⇒ x = 120 / 4
∴ x = 30°
Or
sin ( x - 20 ) = cos ( 3x - 10 )
⇒ cos [ 90 - ( x - 20 ) ] = cos ( 3x - 10 )
⇒ 90 - ( x - 20 ) = 3x - 10
⇒ 90 - x + 20 = 3x - 10
⇒ 110 - x = 3x - 10
⇒ 110 + 10 = 3x + x
⇒ 120 = 4x
∴ 4x = 120
x = 120 / 4
x = 30°
I hope this helps you.
thanks...
nice to help you ✌️✌️
This is related to Trigonometric Ratios of Complementary Angles.
_____________________________
As we know that two angles are said to be complementary if their
sum equals 90° .
i ) sin ( 90 - A ) = cos A
ii ) cos ( 90 - A ) = sin A
_____________________________
According to the problem ,
a ) sin ( x - 20 ) = cos ( 3x - 10 )
⇒ sin ( x - 20 ) = sin [ 90 - ( 3x - 10 ) ]
⇒ x - 20 = [ 90 - ( 3x - 10 ) ]
⇒ x - 20 = 90 - 3x + 10
⇒ x + 3x = 90 + 10 + 20
⇒ 4x = 120
⇒ x = 120 / 4
∴ x = 30°
Or
sin ( x - 20 ) = cos ( 3x - 10 )
⇒ cos [ 90 - ( x - 20 ) ] = cos ( 3x - 10 )
⇒ 90 - ( x - 20 ) = 3x - 10
⇒ 90 - x + 20 = 3x - 10
⇒ 110 - x = 3x - 10
⇒ 110 + 10 = 3x + x
⇒ 120 = 4x
∴ 4x = 120
x = 120 / 4
x = 30°
I hope this helps you.
thanks...
nice to help you ✌️✌️
Similar questions