Math, asked by aptesanika26, 8 months ago

cos x = 2sin45 cos45 - sin 30​

Answers

Answered by Anonymous
0

Answer:

Given:-

Sin45°=\frac{1}{\sqrt{2}}

2

1

Cos45°=\frac{1}{\sqrt{2}}

2

1

Sin30°=\frac{1}{2}

2

1

To Find:-

The Value of x?

\rule{200}{3}

Proof:-

Cos x=2sin45°×cos45°-sin30°

★Putting in The Values★

→Cos x=2×\frac{1}{\sqrt{2}}

2

1

×\frac{1}{\sqrt{2}}

2

1

-\frac{1}{2}

2

1

→Cos x=2×\frac{1×1}{\sqrt{2}× \sqrt{2}}

2

×

2

1×1

-\frac{1}{2}

2

1

→Cos x=\frac{2}{2}

2

2

-\frac{1}{2}

2

1

→Cos x=\frac{2-1}{2}

2

2−1

→Cos x=\frac{1}{2}

2

1

[°•° Cos 60°=\frac{1}{2}

2

1

]

→Cos x=Cos 60

→x=60

Step-by-step explanation:

Mark me as brainliest answer

Similar questions