Math, asked by Manjeet2345, 4 days ago

(cos x + cos 3x + cos 5x + cos 7x)/(sinx + sin 3x + sin 5x + sin 7x)=cot 4x

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Consider LHS

\rm \:  \frac{cosx + cos3x + cos5x + cos7x}{sinx + sin3x + sin5x + sin7x} \\

can be re-arranged as

\rm \: =  \: \dfrac{(cos7x + cosx) + (cos5x + cos3x)}{(sin7x + sinx) + (sin5x + sin3x)}  \\

We know,

\boxed{\sf{  \:\rm \: cosx + cosy = 2cos\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg] \: }}

and

\boxed{\sf{  \:\rm \: sinx + siny = 2sin\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg] \: }} \\

So, on using these results, we get

\rm \: =  \: \dfrac{2cos\bigg[\dfrac{7x + x}{2} \bigg]cos\bigg[\dfrac{7x - x}{2} \bigg] \: +  \:  2cos\bigg[\dfrac{5x + 3x}{2} \bigg]cos\bigg[\dfrac{5x - 3x}{2} \bigg]}{2sin\bigg[\dfrac{7x + x}{2} \bigg]cos\bigg[\dfrac{7x - x}{2} \bigg] \: +  \:  2sin\bigg[\dfrac{5x + 3x}{2} \bigg]cos\bigg[\dfrac{5x - 3x}{2} \bigg]}  \\

\rm \: =  \: \dfrac{2cos\bigg[\dfrac{8x}{2} \bigg]cos\bigg[\dfrac{6x}{2} \bigg] \: +  \:  2cos\bigg[\dfrac{8x}{2} \bigg]cos\bigg[\dfrac{2x}{2} \bigg]}{2sin\bigg[\dfrac{8x}{2} \bigg]cos\bigg[\dfrac{6x}{2} \bigg] \: +  \:  2sin\bigg[\dfrac{8x}{2} \bigg]cos\bigg[\dfrac{2x}{2} \bigg]}  \\

\rm \: =  \: \dfrac{2cos4xcos3x + 2cos4xcosx}{2sin4xcos3x + 2sin4xcosx}

\rm \: =  \: \dfrac{2cos4x(cos3x + cosx)}{2sin4x(cos3x +cosx)}  \\

\rm \: =  \:  \frac{cos4x}{sin4x}  \\

\rm \: =  \: cot4x \\

Hence,

\rm\implies\boxed{\sf{\rm \:  \frac{cosx + cos3x + cos5x + cos7x}{sinx + sin3x + sin5x + sin7x} = cot4x \: }}\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{\sf{  \:\rm \: sinx  -  siny = 2cos\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg] \: }} \\

\boxed{\sf{  \:\rm \: cosx  -  cosy = -  2sin\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg] \: }} \\

\boxed{\sf{  \:\rm \: 2sinx \: cosy = sin(x - y) + sin(x + y) \: }} \\

\boxed{\sf{  \:\rm \: 2cosx \: cosy = cos(x - y) + cos(x + y) \: }} \\

\boxed{\sf{  \:\rm \: 2sinx \: siny = cos(x - y)  -  cos(x + y) \: }} \\

Similar questions